If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9t^2-4.9t+1=0
a = 4.9; b = -4.9; c = +1;
Δ = b2-4ac
Δ = -4.92-4·4.9·1
Δ = 4.41
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4.9)-\sqrt{4.41}}{2*4.9}=\frac{4.9-\sqrt{4.41}}{9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4.9)+\sqrt{4.41}}{2*4.9}=\frac{4.9+\sqrt{4.41}}{9.8} $
| y-(3)=12 | | 12/n=8/3 | | 7w+11+3w+5+54=180 | | 28=7(m−85) | | /x²–12x+36=0 | | 11+y=12 | | 75+30x=100+25x | | 12.3+t=5.6 | | 12c+6=42 | | 7x+46=70.5 | | d-7=75 | | 84=7(m+8) | | 2u-44+2u+48=180 | | 4x-9+3x=1+3x-30 | | 4x+5x=+5x+7 | | a+3/4=71/5 | | -6.8w=3.4= | | 1/3{x-10)=-4 | | 4.9=x+11.6 | | -8x-15=-7 | | 60+12t=720 | | 12=0.5x+20 | | z^{2}=z+30 | | -7d+-5d=-12 | | -93+g=103 | | (2t+4t+4t)-3=4 | | 2x+3=6x–17. | | 93+y=12 | | 7x+7=-27 | | 60+2h=5h | | 2.7x-4.5=-1.26 | | p²+4p-45=0 |